Structure of Compact Quantum Groups $A_u(Q)$ and $B_u(Q)$ and their Isomorphism Classification

Shuzhou Wang

Department of Mathematics
University of Georgia

1. The Notion of Quantum Groups

▶ *G* = Simple compact Lie group, e.g.

$$G=SU(2)=\{\left[egin{array}{cc} lpha & -ar{\gamma} \ \gamma & ar{lpha} \end{array}
ight]:lphaar{lpha}+\gammaar{\gamma}=1,lpha,\gamma\in\mathbb{C}\,\}.$$
 $A=C(G)$

1. The Notion of Quantum Groups

ightharpoonup G =Simple compact Lie group, e.g.

$$G = SU(2) = \{ \begin{bmatrix} \alpha & -\overline{\gamma} \\ \gamma & \overline{\alpha} \end{bmatrix} : \alpha \overline{\alpha} + \gamma \overline{\gamma} = 1, \alpha, \gamma \in \mathbb{C} \}.$$
 $A = C(G)$

▶ Lie group $G \iff$ Hopf algebra $(A, \Delta, \varepsilon, S)$.

1. The Notion of Quantum Groups

▶ G = Simple compact Lie group, e.g.

$$G = SU(2) = \left\{ \begin{bmatrix} \alpha & -\overline{\gamma} \\ \gamma & \overline{\alpha} \end{bmatrix} : \alpha \overline{\alpha} + \gamma \overline{\gamma} = 1, \alpha, \gamma \in \mathbb{C} \right\}.$$
 $A = C(G)$

▶ Lie group $G \iff$ Hopf algebra $(A, \Delta, \varepsilon, S)$.

$$\Delta: A \to A \otimes A, \quad \Delta(f)(s,t) = f(st).$$

$$\varepsilon: A \to \mathbb{C}, \quad \varepsilon(f) = f(e).$$

$$S: A \to A, \quad S(f)(t) = f(t^{-1}).$$

Spectacular development in Mid-1980's:

Drinfeld, Jimbo, Woronowicz,

Spectacular development in Mid-1980's:

Drinfeld, Jimbo, Woronowicz,

Idea of Quantization:

Commuting functions on G, e.g. α , γ ,

 \Downarrow

Non-commuting operators, e.g. α , γ ,

Commutative $C(G) \Longrightarrow \text{Noncommutative } C(G_q)$. $G_q = \text{quantum group}$

Recall Hilbert 5th Problem:

Characterization of Lie groups among topological groups.

Recall Hilbert 5th Problem:
 Characterization of Lie groups among topological groups.

New Problem:Characterization of quantum groups among Hopf algebras.

- Recall Hilbert 5th Problem:
 Characterization of Lie groups among topological groups.
- New Problem:Characterization of quantum groups among Hopf algebras.
- Lesson:
 Quantums groups = "nice Hopf algebras"

 Restrict to such Hopf algebras to obtain nice and deep theory.

- 1. The Notion of Quantum Groups (cont.)
 - ▶ DEFINITION: A <u>compact matrix quantum group</u> (CMQG) is a pair G = (A, u) of a unital C^* -algebra A and $u = (u_{ij})_{i,i=1}^n \in M_n(A)$ satisfying

▶ DEFINITION: A compact matrix quantum group (CMQG) is a pair G = (A, u) of a unital C^* -algebra A and $u = (u_{ij})_{i,j=1}^n \in M_n(A)$ satisfying (1) $\exists \Delta : A \longrightarrow A \otimes A$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}, \qquad i, j = 1, \cdots, n;$$

▶ DEFINITION: A <u>compact matrix quantum group</u> (CMQG) is a pair G = (A, u) of a unital C^* -algebra A and $u = (u_{ij})_{i,j=1}^n \in M_n(A)$ satisfying (1) $\exists \Delta : A \longrightarrow A \otimes A$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}, \qquad i, j = 1, \cdots, n;$$

(2) $\exists u^{-1}$ in $M_n(A)$ and anti-morphism S on $A = *- alg(u_{ii})$ with

$$S(S(a^*)^*) = a, \quad a \in A; \quad S(u) = u^{-1}.$$

 Note: Equivalent definition of CMQG is obtained if condition (2) is replaced with
 (2') ∃ u⁻¹ and (u^t)⁻¹ in M_n(A)

- Note: Equivalent definition of CMQG is obtained if condition (2) is replaced with (2') ∃ u⁻¹ and (u^t)⁻¹ in M_n(A)
- There are other equivalent definitions of CMQG

Famous Example: $C(SU_q(2)), \ q \in \mathbb{R}, \ q \neq 0$

Famous Example: $C(SU_q(2)),\ q\in\mathbb{R},\ q\neq 0$

Generators: α, γ .

Famous Example: $C(SU_q(2)), q \in \mathbb{R}, q \neq 0$

Generators: α, γ .

Relations: the 2 \times 2 matrix $u := \left[\begin{array}{cc} \alpha & - \boldsymbol{q} \gamma^* \\ \gamma & \alpha^* \end{array} \right]$ is unitary,

Famous Example: $C(SU_q(2)), q \in \mathbb{R}, q \neq 0$

Generators: α, γ .

Relations: the 2 × 2 matrix $u := \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$ is unitary, i.e.

$$\begin{split} \alpha^*\alpha + \gamma^*\gamma &= \mathbf{1}, \quad \alpha\alpha^* + \mathbf{q^2}\gamma\gamma^* = \mathbf{1}, \\ \gamma\gamma^* &= \gamma^*\gamma, \quad \alpha\gamma = \mathbf{q}\gamma\alpha, \quad \alpha\gamma^* = \mathbf{q}\gamma^*\alpha. \end{split}$$

Facts:

Facts:

Facts:

▶ Hopf algebra structure same as C(SU(2)):

$$\Delta(u_{ij}) = \sum_{k=1}^{2} u_{ik} \otimes u_{kj}, \qquad i, j = 1, 2;$$

$$\varepsilon(u_{ij}) = \delta_{ij}, \qquad i, j = 1, 2;$$

$$S(u) = u^{-1}.$$

▶ G_q = Deformation of arbitrary simple compact Lie groups: Soibelman et al. based on Drinfeld-Jimbo's $U_q(\mathfrak{g})$

• G_q = Deformation of arbitrary simple compact Lie groups: Soibelman et al. based on Drinfeld-Jimbo's $U_q(\mathfrak{g})$ G_q^u = Twisting of G_q

- ▶ G_q = Deformation of arbitrary simple compact Lie groups: Soibelman et al. based on Drinfeld-Jimbo's $U_q(\mathfrak{g})$ G_q^u = Twisting of G_q
- Woronowicz's theory: Haar measure, Peter-Weyl, Tannka-Krein, etc.

- G_q = Deformation of arbitrary simple compact Lie groups: Soibelman et al. based on Drinfeld-Jimbo's $U_q(\mathfrak{g})$ G_q^u = Twisting of G_q
- Woronowicz's theory: Haar measure, Peter-Weyl,
 Tannka-Krein, etc.
- ▶ Any other classses of examples besides G_q, G^u_q?

- ► G_q = Deformation of arbitrary simple compact Lie groups:
 Soibelman et al. based on Drinfeld-Jimbo's U_q(g)
 G^u_q = Twisting of G_q
- Woronowicz's theory: Haar measure, Peter-Weyl,
 Tannka-Krein, etc.
- ▶ Any other classses of examples besides G_q , G_q^u ?
- ▶ Yes: Universal quantum groups $A_u(Q)$ and $B_u(Q)$,

- G_q = Deformation of arbitrary simple compact Lie groups:
 Soibelman et al. based on Drinfeld-Jimbo's U_q(g)
 G^u_q = Twisting of G_q
- Woronowicz's theory: Haar measure, Peter-Weyl,
 Tannka-Krein, etc.
- ▶ Any other classses of examples besides G_q , G_q^u ?
- Yes: Universal quantum groups $A_u(Q)$ and $B_u(Q)$, quantum permutation groups $A_{aut}(X_n)$, etc.

2. Universal CMQGs $A_u(Q)$ and $B_u(Q)$

For $u=(u_{ij})$, $\bar{u}:=(u_{ij}^*)$, $u^*:=\bar{u}^t$; Q is an $n\times n$ non-singular complex scalar matrix.

2. Universal CMQGs $A_u(Q)$ and $B_u(Q)$

For $u=(u_{ij}), \ \bar{u}:=(u_{ij}^*), \ u^*:=\bar{u}^t; \ Q$ is an $n\times n$ non-singular complex scalar matrix.

$$A_u(Q) := C^*\{u_{ij} : u^* = u^{-1}, \ (u^t)^{-1} = Q\bar{u}Q^{-1}\}$$

2. Universal CMQGs $A_u(Q)$ and $B_u(Q)$

For $u=(u_{ij}), \ \bar{u}:=(u_{ij}^*), \ u^*:=\bar{u}^t; \ Q$ is an $n\times n$ non-singular complex scalar matrix.

$$A_u(Q) := C^*\{u_{ij} : u^* = u^{-1}, \ (u^t)^{-1} = Q\bar{u}Q^{-1}\}$$

$$B_u(Q) := C^*\{u_{ij} : u^* = u^{-1}, (u^t)^{-1} = QuQ^{-1}\}$$

THEOREM 1.

(1) $A_u(Q)$ and $B_u(Q)$ are CMQGs (in fact quantum automorphism groups).

THEOREM 1.

- (1) $A_u(Q)$ and $B_u(Q)$ are CMQGs (in fact quantum automorphism groups).
- (2) Every CMQG is a quantum subgroup of $A_u(Q)$ for some Q > 0;

THEOREM 1.

- (1) $A_u(Q)$ and $B_u(Q)$ are CMQGs (in fact quantum automorphism groups).
- (2) Every CMQG is a quantum subgroup of $A_u(Q)$ for some Q > 0:

Every CMQG with self conjugate fundamental representation is a quantum subgroup of $B_u(Q)$ for some Q.

- ► The C^* -algebras $A_u(Q)$ and $B_u(Q)$ are non-nuclear (even non-exact) for generic Q's.
 - e.g. $C^*(F_n)$ is a quotient of $A_u(Q)$ for Q > 0.

- ▶ The C^* -algebras $A_u(Q)$ and $B_u(Q)$ are non-nuclear (even non-exact) for generic Q's.
 - e.g. $C^*(F_n)$ is a quotient of $A_u(Q)$ for Q > 0.
- $ightharpoonup B_u(Q) = C(SU_q(2))$ for

$$Q = \left[egin{array}{cc} 0 & -1 \ q & 0 \end{array}
ight], \;\; q \in \mathbb{R}, \; q
eq 0.$$

- The C^* -algebras $A_u(Q)$ and $B_u(Q)$ are non-nuclear (even non-exact) for generic Q's.
 - e.g. $C^*(F_n)$ is a quotient of $A_u(Q)$ for Q > 0.
- $ightharpoonup B_u(Q) = C(SU_q(2))$ for

$$Q = \left[egin{array}{cc} 0 & -1 \ q & 0 \end{array}
ight], \;\; q \in \mathbb{R}, \; q
eq 0.$$

▶ Banica's computed the fusion rings of $A_u(Q)$ (for Q > 0) and $B_u(Q)$ (for $Q\bar{Q}$) in his deep thesis.

Q > 0 is called <u>normalized</u> if $Tr(Q) = Tr(Q^{-1})$.

Q > 0 is called <u>normalized</u> if $Tr(Q) = Tr(Q^{-1})$.

THEOREM 2. Let $Q \in GL(n,\mathbb{C})$ and $Q' \in GL(n',\mathbb{C})$ be positive, normalized, with eigen values $q_1 \geq q_2 \geq \cdots \geq q_n$ and $q'_1 \geq q'_2 \geq \cdots \geq q'_{n'}$ respectively.

Q > 0 is called <u>normalized</u> if $Tr(Q) = Tr(Q^{-1})$.

THEOREM 2. Let $Q \in GL(n,\mathbb{C})$ and $Q' \in GL(n',\mathbb{C})$ be positive, normalized, with eigen values $q_1 \geq q_2 \geq \cdots \geq q_n$ and $q'_1 \geq q'_2 \geq \cdots \geq q'_{n'}$ respectively.

Then, $A_u(Q)$ is isomorphic to $A_u(Q')$ iff,

(i) n = n', and

Q > 0 is called <u>normalized</u> if $Tr(Q) = Tr(Q^{-1})$.

THEOREM 2. Let $Q \in GL(n,\mathbb{C})$ and $Q' \in GL(n',\mathbb{C})$ be positive, normalized, with eigen values $q_1 \geq q_2 \geq \cdots \geq q_n$ and $q'_1 \geq q'_2 \geq \cdots \geq q'_{n'}$ respectively.

Then, $A_u(Q)$ is isomorphic to $A_u(Q')$ iff,

(i) n = n', and

(ii)
$$(q_1, q_2, \dots, q_n) = (q'_1, q'_2, \dots, q'_n)$$
 or $(q_n^{-1}, q_{n-1}^{-1}, \dots, q_1^{-1}) = (q'_1, q'_2, \dots, q'_n).$

THEOREM 3. Let $Q \in GL(n, \mathbb{C})$ and $Q' \in GL(n', \mathbb{C})$ be such that $Q\bar{Q} \in \mathbb{R}I_n$, $Q'\overline{Q'} \in \mathbb{R}I_{n'}$, respectively.

THEOREM 3. Let $Q \in GL(n,\mathbb{C})$ and $Q' \in GL(n',\mathbb{C})$ be such that $Q\bar{Q} \in \mathbb{R}I_n$, $Q'\overline{Q'} \in \mathbb{R}I_{n'}$, respectively. Then, $B_u(Q)$ is isomorphic to $B_u(Q')$ iff,

(i)
$$n = n'$$
,

THEOREM 3. Let $Q \in GL(n, \mathbb{C})$ and $Q' \in GL(n', \mathbb{C})$ be such that $Q\bar{Q} \in \mathbb{R}I_n$, $Q'\overline{Q'} \in \mathbb{R}I_{n'}$, respectively. Then, $B_u(Q)$ is isomorphic to $B_u(Q')$ iff,

- (i) n = n', and
- (ii) there exist $S \in U(n)$ and $z \in \mathbb{C}^*$ such that $Q = zS^tQ'S$.

THEOREM 3. Let $Q \in GL(n, \mathbb{C})$ and $Q' \in GL(n', \mathbb{C})$ be such that $Q\bar{Q} \in \mathbb{R}I_n$, $Q'\overline{Q'} \in \mathbb{R}I_{n'}$, respectively. Then, $B_u(Q)$ is isomorphic to $B_u(Q')$ iff,

- (i) n = n', and
- (ii) there exist $S \in U(n)$ and $z \in \mathbb{C}^*$ such that $Q = zS^tQ'S$.

Note: The quantum groups $B_u(Q)$ are *simple* in an appropriate sense: cf. S. Wang: "Simple compact quantum groups I", JFA, 256 (2009), 3313-3341.

Note:
$$A_u(Q) = C(\mathbb{T}), \ \ B_u(Q) = C^*(\mathbb{Z}/2\mathbb{Z})$$
 for $Q \in GL(1,\mathbb{C})$.

Note: $A_u(Q) = C(\mathbb{T}), \ B_u(Q) = C^*(\mathbb{Z}/2\mathbb{Z}) \text{ for } Q \in GL(1,\mathbb{C}).$

THEOREM 4. Let $Q \in GL(n, \mathbb{C})$. Then there exists positive matrices P_i such that

Note: $A_u(Q) = C(\mathbb{T}), \ B_u(Q) = C^*(\mathbb{Z}/2\mathbb{Z}) \text{ for } Q \in GL(1,\mathbb{C}).$

THEOREM 4. Let $Q \in GL(n, \mathbb{C})$. Then there exists positive matrices P_i such that

$$A_{\textit{u}}(\textit{Q}) \cong A_{\textit{u}}(\textit{P}_1) * A_{\textit{u}}(\textit{P}_2) * \cdots * A_{\textit{u}}(\textit{P}_k).$$

THEOREM 5. Let $Q \in GL(n, \mathbb{C})$. Then there exist positive matrices P_i ($i \leq k$) and matrices Q_j ($j \leq l$) with $Q_j \bar{Q}_j$'s are nonzero scalars

THEOREM 5. Let $Q \in GL(n, \mathbb{C})$. Then there exist positive matrices P_i ($i \le k$) and matrices Q_j ($j \le l$) with $Q_j \bar{Q}_j$'s are nonzero scalars and that

$$B_{u}(Q) \cong A_{u}(P_{1}) * A_{u}(P_{2}) * \cdots * A_{u}(P_{k}) *$$

 $* B_{u}(Q_{1}) * B_{u}(Q_{2}) * \cdots * B_{u}(Q_{l}).$

THEOREM 5. Let $Q \in GL(n, \mathbb{C})$. Then there exist positive matrices P_i ($i \le k$) and matrices Q_j ($j \le l$) with $Q_j \bar{Q}_j$'s are nonzero scalars and that

$$B_u(Q) \cong A_u(P_1) * A_u(P_2) * \cdots * A_u(P_k) *$$

 $* B_u(Q_1) * B_u(Q_2) * \cdots * B_u(Q_l).$

Note: This is contrary to an earlier belief that $A_u(P_i)$'s do not appear in the decomp.!

COROLLARY of THEOREM 4.

(1). Let $Q = diag(e^{i\theta_1}P_1, e^{i\theta_2}P_2, \cdots, e^{i\theta_k}P_k)$, with positive matrices P_j and distinct angles $0 \le \theta_j < 2\pi, j = 1, \cdots, k, k \ge 1$

COROLLARY of THEOREM 4.

(1). Let $Q = diag(e^{i\theta_1}P_1, e^{i\theta_2}P_2, \cdots, e^{i\theta_k}P_k)$, with positive matrices P_j and distinct angles $0 \le \theta_j < 2\pi, j = 1, \cdots, k, k \ge 1$ Then

$$A_u(Q) \cong A_u(P_1) * A_u(P_2) * \cdots * A_u(P_k).$$

COROLLARY of THEOREM 4.

(1). Let $Q = diag(e^{i\theta_1}P_1, e^{i\theta_2}P_2, \cdots, e^{i\theta_k}P_k)$, with positive matrices P_j and distinct angles $0 \le \theta_j < 2\pi, j = 1, \cdots, k, k \ge 1$ Then

$$A_u(Q) \cong A_u(P_1) * A_u(P_2) * \cdots * A_u(P_k).$$

(2). Let $Q \in GL(2,\mathbb{C})$ be a non-normal matrix. Then $A_u(Q) = C(\mathbb{T}).$

COROLLARY of THEOREM 4.

(1). Let $Q = diag(e^{i\theta_1}P_1, e^{i\theta_2}P_2, \cdots, e^{i\theta_k}P_k)$, with positive matrices P_j and distinct angles $0 \le \theta_j < 2\pi, j = 1, \cdots, k, k \ge 1$ Then

$$A_{U}(Q) \cong A_{U}(P_1) * A_{U}(P_2) * \cdots * A_{U}(P_k).$$

- (2). Let $Q \in GL(2,\mathbb{C})$ be a non-normal matrix. Then $A_u(Q) = C(\mathbb{T})$.
- (3). For $Q \in GL(2,\mathbb{C})$, $A_u(Q)$ is isomorphic to either $C(\mathbb{T})$, or $C(\mathbb{T}) * C(\mathbb{T})$, or $A_u(diag(1,q))$ with $0 < q \le 1$.

COROLLARY of THEOREM 5.

(1). Let $Q = diag(T_1, T_2, \dots, T_k)$ be such that $T_j \bar{T}_j = \lambda_j I_{n_j}$, where the λ_j 's are distinct non-zero real numbers (the n_j 's need not be different), $j = 1, \dots, k, k \ge 1$.

COROLLARY of THEOREM 5.

(1). Let $Q = diag(T_1, T_2, \dots, T_k)$ be such that $T_j \bar{T}_j = \lambda_j I_{n_j}$, where the λ_j 's are distinct non-zero real numbers (the n_j 's need not be different), $j = 1, \dots, k, k \ge 1$. Then

$$B_u(Q) \cong B_u(T_1) * B_u(T_2) * \cdots * B_u(T_k).$$

COROLLARY of THEOREM 5.

(1). Let $Q = diag(T_1, T_2, \cdots, T_k)$ be such that $T_j \bar{T}_j = \lambda_j I_{n_j}$, where the λ_j 's are distinct non-zero real numbers (the n_j 's need not be different), $j = 1, \cdots, k, k \ge 1$. Then

$$B_u(Q) \cong B_u(T_1) * B_u(T_2) * \cdots * B_u(T_k).$$

(2). Let $Q = \begin{bmatrix} 0 & T \\ q\overline{T}^{-1} & 0 \end{bmatrix}$, where $T \in GL(n, \mathbb{C})$ and q is a complex but non-real number.

COROLLARY of THEOREM 5.

(1). Let $Q = diag(T_1, T_2, \cdots, T_k)$ be such that $T_j \bar{T}_j = \lambda_j I_{n_j}$, where the λ_j 's are distinct non-zero real numbers (the n_j 's need not be different), $j = 1, \cdots, k, k \ge 1$. Then

$$B_u(Q) \cong B_u(T_1) * B_u(T_2) * \cdots * B_u(T_k).$$

(2). Let $Q = \begin{bmatrix} 0 & T \\ q\overline{T}^{-1} & 0 \end{bmatrix}$, where $T \in GL(n, \mathbb{C})$ and q is a complex but non-real number. Then $B_u(Q)$ is isomorphic to $A_u(|T|^2)$.

6. Important Related Work

A Conceptual Breakthrough:

6. Important Related Work

A Conceptual Breakthrough:

Debashish Goswami used $A_u(Q)$ to prove the existence of quantum isometry groups for very general classes of noncommutative spaces in the sense of Connes.

Banica's Fusion Theorem 1:

Banica's Fusion Theorem 1:

The irreducible representations π_x of the quantum group $A_u(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$,

Banica's Fusion Theorem 1:

The irreducible representations π_x of the quantum group $A_u(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$, where $\mathbb{N} * \mathbb{N}$ is the free monoid with generators α and β and anti-multiplicative involution $\bar{\alpha} = \beta$, and the classes of u, \bar{u} are α, β respectively.

Banica's Fusion Theorem 1:

The irreducible representations π_X of the quantum group $A_u(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$, where $\mathbb{N} * \mathbb{N}$ is the free monoid with generators α and β and anti-multiplicative involution $\bar{\alpha} = \beta$, and the classes of u, \bar{u} are α, β respectively. With this parametrization, one has the fusion rules

$$\pi_{x}\otimes\pi_{y}=\sum_{x=ag,ar{g}b=y}\pi_{ab}$$

Banica's Fusion Theorem 2:

Banica's Fusion Theorem 2:

The irreducible representations π_k of the quantum group $B_u(Q)$ are parameterized by $k \in \mathbb{Z}_+ = \{0, 1, 2, \cdots\}$,

Banica's Fusion Theorem 2:

The irreducible representations π_k of the quantum group $B_u(Q)$ are parameterized by $k \in \mathbb{Z}_+ = \{0, 1, 2, \cdots\}$, and one has the fusion rules

$$\pi_k \otimes \pi_l = \pi_{|k-l|} \oplus \pi_{|k-l|+2} \oplus \cdots \oplus \pi_{k+l-2} \oplus \pi_{k+l}$$

7. Open Problems

▶ (1) Construct explicit models of irreducible representations π_X ($x \in \mathbb{N} * \mathbb{N}$) of the quantum groups $A_u(Q)$ for positive Q > 0.

7. Open Problems

- ▶ (1) Construct explicit models of irreducible representations π_X ($X \in \mathbb{N} * \mathbb{N}$) of the quantum groups $A_u(Q)$ for positive Q > 0.
- (2) Construct explicit models of irreducible representations π_k ($k \in \mathbb{Z}_+$) of the quantum groups $B_u(Q)$ for Q with $Q\bar{Q} = \pm 1$.

THANKS FOR YOUR ATTENTION!