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1. The Notion of Quantum Groups

I G = Simple compact Lie group, e.g.

G = SU(2) = {

 α −γ̄

γ ᾱ

 : αᾱ + γγ̄ = 1, α, γ ∈ C }.

A = C(G)

I Lie group G⇐⇒ Hopf algebra (A,∆, ε,S).

∆ : A→ A⊗ A, ∆(f )(s, t) = f (st).

ε : A→ C, ε(f ) = f (e).

S : A→ A, S(f )(t) = f (t−1).
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1. The Notion of Quantum Groups (cont.)

Spectacular development in Mid-1980’s:

Drinfeld, Jimbo, Woronowicz,

Idea of Quantization:

Commuting functions on G, e.g. α, γ,

⇓

Non-commuting operators, e.g. α, γ,

Commutative C(G) =⇒ Noncommutative C(Gq).

Gq = quantum group
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1. The Notion of Quantum Groups (cont.)

I Recall Hilbert 5th Problem:

Characterization of Lie groups among topological groups.

I New Problem:

Characterization of quantum groups among Hopf algebras.

I Lesson:

Quantums groups = “nice Hopf algebras”

Restrict to such Hopf algebras to obtain nice and deep

theory.
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1. The Notion of Quantum Groups (cont.)

I DEFINITION: A compact matrix quantum group (CMQG) is

a pair G = (A,u) of a unital C∗-algebra A and

u = (uij)
n
i,j=1 ∈ Mn(A) satisfying

(1) ∃ ∆ : A −→ A⊗ A with

∆(uij) =
n∑

k=1

uik ⊗ ukj , i , j = 1, · · · ,n;

(2) ∃ u−1 in Mn(A) and anti-morphism S on

A = ∗ − alg(uij) with

S(S(a∗)∗) = a, a ∈ A; S(u) = u−1.



1. The Notion of Quantum Groups (cont.)

I DEFINITION: A compact matrix quantum group (CMQG) is

a pair G = (A,u) of a unital C∗-algebra A and

u = (uij)
n
i,j=1 ∈ Mn(A) satisfying

(1) ∃ ∆ : A −→ A⊗ A with

∆(uij) =
n∑

k=1

uik ⊗ ukj , i , j = 1, · · · ,n;

(2) ∃ u−1 in Mn(A) and anti-morphism S on

A = ∗ − alg(uij) with

S(S(a∗)∗) = a, a ∈ A; S(u) = u−1.



1. The Notion of Quantum Groups (cont.)

I DEFINITION: A compact matrix quantum group (CMQG) is

a pair G = (A,u) of a unital C∗-algebra A and

u = (uij)
n
i,j=1 ∈ Mn(A) satisfying

(1) ∃ ∆ : A −→ A⊗ A with

∆(uij) =
n∑

k=1

uik ⊗ ukj , i , j = 1, · · · ,n;

(2) ∃ u−1 in Mn(A) and anti-morphism S on

A = ∗ − alg(uij) with

S(S(a∗)∗) = a, a ∈ A; S(u) = u−1.



1. The Notion of Quantum Groups (cont.)

I Note: Equivalent definition of CMQG is obtained if

condition (2) is replaced with

(2′) ∃ u−1 and (ut )−1 in Mn(A)

I There are other equivalent definitions of CMQG
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1. The Notion of Quantum Groups (cont.)

Famous Example: C(SUq(2)), q ∈ R, q 6= 0

Generators: α, γ.

Relations: the 2× 2 matrix u :=

[
α −qγ∗

γ α∗

]
is unitary,

i.e.

α∗α + γ∗γ = 1, αα∗ + q2γγ∗ = 1,

γγ∗ = γ∗γ, αγ = qγα, αγ∗ = qγ∗α.
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1. The Notion of Quantum Groups (cont.)

Facts:

I (ut )−1 =

 α∗ −q−1γ

q2γ∗ α


I Hopf algebra structure same as C(SU(2)):

∆(uij) =
2∑

k=1

uik ⊗ ukj , i , j = 1,2;

ε(uij) = δij , i , j = 1,2;

S(u) = u−1.
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1. The Notion of Quantum Groups (cont.)

I Gq = Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo’s Uq(g)

Gu
q = Twisting of Gq

I Woronowicz’s theory: Haar measure, Peter-Weyl,

Tannka-Krein, etc.

I Any other classses of examples besides Gq, Gu
q?

I Yes: Universal quantum groups Au(Q) and Bu(Q),

quantum permutation groups Aaut (Xn), etc.
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2. Universal CMQGs Au(Q) and Bu(Q)

For u = (uij), ū := (u∗ij ), u∗ := ūt ; Q is an n × n non-singular

complex scalar matrix.

Au(Q) := C∗{uij : u∗ = u−1, (ut )−1 = QūQ−1}

Bu(Q) := C∗{uij : u∗ = u−1, (ut )−1 = QuQ−1}
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2. Au(Q) and Bu(Q) (cont.)

THEOREM 1.

(1) Au(Q) and Bu(Q) are CMQGs (in fact quantum

automorphism groups).

(2) Every CMQG is a quantum subgroup of Au(Q) for some

Q > 0;

Every CMQG with self conjugate fundamental representation is

a quantum subgroup of Bu(Q) for some Q.
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2. Au(Q) and Bu(Q) (cont.)

I The C∗-algebras Au(Q) and Bu(Q) are non-nuclear (even

non-exact) for generic Q’s.

e.g. C∗(Fn) is a quotient of Au(Q) for Q > 0.

I Bu(Q) = C(SUq(2)) for

Q =

 0 −1

q 0

 , q ∈ R, q 6= 0.

I Banica’s computed the fusion rings of Au(Q) (for Q > 0)

and Bu(Q) (for QQ̄) in his deep thesis.
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3. Au(Q) for Positive Q

Q > 0 is called normalized if Tr(Q) = Tr(Q−1).

THEOREM 2. Let Q ∈ GL(n,C) and Q′ ∈ GL(n′,C) be positive,

normalized, with eigen values q1 ≥ q2 ≥ · · · ≥ qn and

q′1 ≥ q′2 ≥ · · · ≥ q′n′ respectively.

Then, Au(Q) is isomorphic to Au(Q′) iff,

(i) n = n′, and

(ii) (q1,q2, · · · ,qn) = (q′1,q
′
2, · · · ,q′n) or

(q−1
n ,q−1

n−1, · · · ,q
−1
1 ) = (q′1,q

′
2, · · · ,q′n).
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4. Bu(Q) with QQ̄ ∈ RIn

THEOREM 3. Let Q ∈ GL(n,C) and Q′ ∈ GL(n′,C) be such

that QQ̄ ∈ RIn, Q′Q′ ∈ RIn′ , respectively.

Then, Bu(Q) is

isomorphic to Bu(Q′) iff,

(i) n = n′, and

(ii) there exist S ∈ U(n) and z ∈ C∗ such that

Q = zStQ′S.

Note: The quantum groups Bu(Q) are simple in an appropriate

sense: cf. S. Wang: “Simple compact quantum groups I”, JFA,

256 (2009), 3313-3341.
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5. Au(Q) and Bu(Q) for Arbitrary Q

Note: Au(Q) = C(T), Bu(Q) = C∗(Z/2Z) for Q ∈ GL(1,C).

THEOREM 4. Let Q ∈ GL(n,C). Then there exists positive

matrices Pj such that

Au(Q) ∼= Au(P1) ∗ Au(P2) ∗ · · · ∗ Au(Pk ).
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THEOREM 5. Let Q ∈ GL(n,C). Then there exist positive

matrices Pi (i ≤ k ) and matrices Qj (j ≤ l) with QjQ̄j ’s are

nonzero scalars

and that

Bu(Q) ∼= Au(P1) ∗ Au(P2) ∗ · · · ∗ Au(Pk )∗

∗Bu(Q1) ∗ Bu(Q2) ∗ · · · ∗ Bu(Ql).

Note: This is contrary to an earlier belief that Au(Pi)’s do not

appear in the decomp.!
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5. Au(Q) and Bu(Q) for Arbitrary Q

COROLLARY of THEOREM 4.

(1). Let Q = diag(eiθ1P1,eiθ2P2, · · · ,eiθk Pk ), with positive

matrices Pj and distinct angles 0 ≤ θj < 2π, j = 1, · · · , k , k ≥ 1

Then

Au(Q) ∼= Au(P1) ∗ Au(P2) ∗ · · · ∗ Au(Pk ).

(2). Let Q ∈ GL(2,C) be a non-normal matrix. Then

Au(Q) = C(T).

(3). For Q ∈ GL(2,C), Au(Q) is isomorphic to either C(T), or

C(T) ∗ C(T), or Au(diag(1,q)) with 0 < q ≤ 1.
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